If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9y^2+21y+10=0
a = -9; b = 21; c = +10;
Δ = b2-4ac
Δ = 212-4·(-9)·10
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-3\sqrt{89}}{2*-9}=\frac{-21-3\sqrt{89}}{-18} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+3\sqrt{89}}{2*-9}=\frac{-21+3\sqrt{89}}{-18} $
| 3x+5=6+3x | | 8w=w+35 | | -3/5x+3/5=18/10 | | (40)=-8x+64 | | -3/4z+5=-1 | | 3x+2=11+3X | | 2x-(3/7)=(x/5)+1 | | 3(x-17)=x-19 | | 6p=p+35 | | 4x+1/2(4x+12)=2(4x+3 | | -5-6x=104 | | 1-|1/3q-5|=6 | | 3(2y−1)=6y+2 | | -1/2-2/7x=1/3 | | 8(q+31)=50 | | x+4/7=1/14 | | 2y^-1/5=-6 | | 2+5m=10+7m | | 9b^2+66b+12=0 | | 2-b=24 | | 2z+6-5z/2=0 | | (x+2)(x+2)-1=35 | | 10^x=500 | | -6p-6=-54 | | 2(5x+3)-4(7x1)=-88 | | (2^{x+5})(2^x)=64. | | -5(7b+7)=19-8b | | 6y+6=45 | | 4.57x+13.79=45.78 | | (2^{x+5})(2^x)=64 | | -5(7b+7=19-8b | | 4(x+4)=-20-5X |